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We consider additional aspects of the recently derived “minimum uncertainty” (µ) wavelets. In particular, we
show that they are fundamentally related to both the harmonic oscillator eigenstates and the canonical coherent
states that play a fundamental role in quantum dynamics. In addition, we derive new raising and lowering
operators that apply to theµ-wavelets. Finally, we explore in some detail the senses in which theµ-wavelets
form complete sets that can be used in a variety of applications in quantum dynamics.

I. Introduction

Recently it has been shown that there exist new, relative
minimum solutions of the Heisenberg uncertainty product, which
we called “minimum uncertainty” (µ) wavelets.1-6 Imposition
of a constrained minimization on the Heisenberg uncertainty
product leads to a hierarchical relation for generating states of
decreasing uncertainty in one canonical variable from states of
greater uncertainty in this variable, while producing the minimal
increase in the uncertainty of the canonically conjugate variable.
The role of the constraint is to prevent the variation from simply
leading to a Gaussian that has been squeezed in one canonical
variable. If the starting point of the hierarchy is taken to be the
conventional “vacuum state” (eigenstates of the annihilation
operator,â, with eigenvalue zero), then one obtains the result
that theµ-wavelets are a generalization of the standard vacuum
(Gaussian) states. Because coherent states are eigenstates ofâ
with, in general, complex eigenvaluesR, each such state can
be viewed as the vacuum state for the shifted operator7-10

Consequently, foreach member of the overcomplete set of
coherent states there is a corresponding hierarchy ofµ-wavelet
states. Because coherent states play a fundamental role in a vast
range of physics9,11-14 (quantum field theory, quantum elec-
trodynamics, solid state physics, statistical mechanics, etc.), as
well as in mathematics, it is of considerable interest to explore
more deeply the properties ofµ-wavelets and their connections
to coherent states. Additional impetus for such studies is
provided by the fundamental role of the Heisenberg uncertainty
principle in such areas as digital signal processing, filter design,
etc. This paper extends the earlier analysis presented by two of
the authors.1,2

It is useful to examine some of the reasons why the coherent
states (and the harmonic oscillator eigenstates) are so widely
relevant. Perelomov8 has discussed very clearly the intimate
connection between the more familiar coherent states and
algebras of various quantum mechanical operators. The non-
Abelian character of the operator groups underlying these
algebras imposes uncertainty constraints on the precision with
which the physical properties associated with the operators can
be determined. Furthermore, these constraints are fundamentally
responsible for the distinctive nature of quantum mechanics
compared to classical dynamics. Because there is great tech-
nological potential associated with processes that follow the
quantum mechanical rather than classical dynamics, one expects
that it is essential to understand and be able to create and utilize
maximally controlled quantum states of a wide variety of
systems or materials. The greatest progress in this direction has
been for spin-type systems, but there is enormous interest in
similar control over matter waves. Unfortunately, there is
relatively little known aboutexact, entangled solutions of
the Schro¨dinger equation describing systems of material par-
ticles.

It is the eigenstates of physical (Hermitian) operators that
provide the mathematical tools (i.e., representations and basis
sets) for computations and system control, and again, the non-
Abelian nature of the groups of operators representing the
common observables of physical properties of material systems
prevents one from having a single basis that can handle all
quantities of interest. Klauder and others7-9 have stressed the
important notion that canonical coherent states provide the best
possible compromise (in the minimum Heisenberg uncertainty
sense) between say the coordinate and momentum representa-
tions. The “canonical” label simply stresses the fact that these
are coherent states associated with noncommuting canonically
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conjugate variables. In this regard, we stress the fact that some
of the most useful coherent states are those based on the
Gaussian function, because these control the uncertainty in
position and momentum. In fact, we shall focus solely on these
in the present work, although it is an interesting question whether
minimum uncertainty wavelets can also be generated for non-
Gaussian coherent states associated with other types of
observables.7-9

The plan of this paper is as follows. In the next section we
give a brief summary of theµ-wavelets, the hierarchy they
satisfy, and their connection to previously introduced “Hermite
distributed approximating functionals” (HDAFs). Also in this
section we examine new raising and lowering operators for the
µ-wavelets that differ from the usual ones associated with
canonical coherent states and the eigenstates of the harmonic
oscillator.3-6

Then in section III, we examine some detailed relations
betweenµ-wavelets and harmonic oscillator states. We shall
see thatµ-wavelets are eigenvectors of a non-Hermitian version
of the harmonic oscillator, which is due to a similarity
transformation of the harmonic oscillator Hamiltonian, where
the transformation does not possess a bounded inverse.15 This
will result in our obtaining various resolutions of the identity
in terms of µ wavelets. Included are resolutions in theL 2

(Hilbert space) sense, the weak sense, and theL 2-sense for the
dense Schwarz subspace of Hilbert space. Our discussion
focuses on the canonical coherent states and we follow the
review of Perelomov.8

In section IV we discuss the relation between HDAFs16-19

and the canonical coherent states. Then in section V we indicate
some possible avenues of further inquiry and give our conclu-
sions. Finally, in the Appendix we discuss the shift operator
and establish completeness in the weak sense forany L 2-
function (the so-called “fiduciary function” discussed in Klauder
and Skagerstam).9

II. Relative Minimum Uncertainty Hierarchy Defining
µ-Wavelets

We shall couch our discussion in terms of the observables
corresponding to the (Cartesian) position operator,x̂, and its
canonically conjugate momentum operator,k̂, satisfying the
commutation relation

Thus,{x̂, k̂, 1̂} are elements of a Heisenberg Lie-algebra.7,8

Consider the set of all ket vectors|φσ(0)〉 centered in the phase
space atx ) 0, k ) 0 in the sense that

and

In one dimension, the Heisenberg uncertainty principle takes
the form

The equality holds for the state|φ0
σ(0)〉, which satisfies the

condition

where σ2 is real and greater than 0. (A family of relative
minimum uncertainty solutions arise ifσ2 is complex with
Re σ2 > 0; one can always introduce new canonical operators
for which such states give the absolute minimum uncertainty
product.7,8)

As is to be expected, these equations are essentially un-
changed for ket vectors centered at an arbitrary pointx, k in
the phase space. This is conveniently demonstrated by introduc-
ing the shift operatorD̂(R).5,7-10 For completeness, basic features
of this operator are discussed in the Appendix. The action of
D̂(R), expressed in either thex or k representation, is to shift
the origin and adjust the phase of the ket vector on which it
acts. That is, for any Hilbert-space vector|f〉,

and

where

HereR is a complex-number representation of the phase point
x, k. The quantityσ is a scaling parameter with the dimensions
of length. Defined in this way

and thus the shift operator is unitary. By appropriate insertion
of the identity in the form

into this series of equations, we can transform them so as to
reference them to any arbitraryx, k phase-space point. That is

and

In these equations, we have made use of the similarity
transforms

and

x̂|φ0
σ(0)〉 ) -iσ2k̂|φ0

σ(0)〉 (6)

〈x′|f(R)〉 ) 〈x′| D̂(R)|f〉 ) e-(1/2)ixkeikx′f(x′-x) (7)

〈k′|f(R)〉 ) 〈k′|D̂(R)|f〉 ) e(1/2)ixke-ixk′f̃ (k′-k) (8)

R ) 1

x2
[xσ + ikσ] (9)

D̂(R)-1 ) D̂(R)† ) D̂(-R) (10)

1̂ ) D̂(R)† D̂(R) (11)

0 )
〈φσ(R)|(x̂ - x)|φσ(R)〉

〈φσ(R)|φσ(R)〉
(12)

0 )
〈φσ(R)|(k̂ - k)|φσ(R)〉

〈φσ(R)|φσ(R)〉
(13)

∆x∆k )
〈φσ(R)|(x̂ - x)2|φσ(R)〉〈φσ(R)|(k̂ - k)2|φσ(R)〉

〈φσ(R)|φσ(R)〉2
g

1
2

(14)

(x̂ - x)|φ0
σ(R)〉 ) -iσ2(k̂ - k)|φ0

σ(R)〉 (15)

D̂(R)x̂D̂(R)† ) x̂ - x

D̂(R)k̂D̂(R)† ) k̂ - k (16)

[x̂, k̂] ) i1̂ (2)

0 )
〈φσ(0)|x̂|φσ(0)〉
〈φσ(0)|φσ(0)〉

(3)

0 )
〈φσ(0)|k̂|φσ(0)〉
〈φσ(0)|φσ(0)〉

(4)

∆x∆k )
〈φσ(0)|x̂2|φσ(0)〉〈φσ(0)|k̂2|φσ(0)〉

〈φσ(0)|φσ(0)〉2
g

1
2

(5)
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Equation 15 can be written in the well-known eigenvalue
form5,7-10

where

clearly is the annihilation operator for the state|φ0
σ(0)〉. From

the foregoing it is clear that|φ0
σ(0)〉 is proportional to |n ) 0,

σ〉, the harmonic oscillator ground state. Both are, of course,
Gaussian in either thex or k representation. We distinguish
between these two ket vectors because it is convenient (as later
will be made clear) to apply different normalization conditions
to each, namely〈k ) 0|φ0

σ(0)〉 ) 1 and〈n ) 0, σ|n ) 0, σ〉 )
1.

For our present purposes, a useful way to constrain the
minimization of eq 5 (and, more generally, eq 14), which we
now summarize, was first given by Hoffman and Kouri.1,2 For
convenience we consider a state centered atx ) 0, k ) 0, but
as shown above, the state can be arbitrarily centered in the phase
space using the shift operator. To simplify notation, we will
assume that all ket vectors are centered atx ) 0 andk ) 0
unless explicitly indicated otherwise. Thus, for example, we
write |φ0

σ(0)〉 simply as |φ0
σ〉. We begin with the state of

minimum uncertainty,|φ0
σ〉, and add to it|φ1

σ〉, to the end that
∆x for the resulting state,|ψ1

σ〉, defined by

is decreased. We note that the starting vector can actually be
arbitrary, as we will discuss shortly, but we first focus on the
case where it is taken to be an absolute minimum uncertainty
state. Of course, if the new state|ψ1

σ〉 is not Gaussian, then the
overall uncertainty product∆x∆k must increase. Our object is
to have this happen in a controlled way. (Note: Here we are
squeezing∆x at the expense of∆k; the roles can of course be
reversed.) Equation 5 can be expressed in the form

where we constrain the variation to all possible|φ1
σ〉 that keep

∆f
2, defined by

fixed. Subject to this condition, we vary|φ1
σ〉 so that that the

nonnegatiVe quantity∆v
2, defined by

is a minimum. Clearly,∆v
2 > 0 (if we exclude the trivial case

where|φ1
σ〉 vanishes) and therefore the fixed value of∆f

2 sets
the “floor” below which∆x∆k cannot go. Such a variation is
similar in spirit to the Lagrange method of undetermined
multipliers in that∆f

2 dependsboth on |φ0
σ〉 and |φ1

σ〉 and is
unknown until|φ1

σ〉 has been determined. The minimization of
eq 22 is carried out in exactly the same manner as the original,

unconstrained variation of eq 5. The result is the condition on
|φ1

σ〉 that1,2

Using eq 19, we then obtain

Note that the operator [x̂ + iσ2k̂] that appears in these equations
is proportional to the annihilation operator (see eq 18) and that
eq 24 is somewhat reminiscent of a lowering operation on|φ1

σ〉.
We shall now digress to consider the case where we replace

|φ0
σ〉 in eq 19 with anarbitrary vector, |ψκ

σ〉, having the
normalization〈k ) 0|ψκ

σ〉 ) 1, whereκ is an index that denotes
a particular choice of the arbitrary initial state. For notational
convenience we will treatκ as though it were a numerical index
and reserveκ ) 0 (and, as a consequence, all integer values of
κ) for the case|ψ0

σ〉 ≡ |φ0
σ〉, which we have just discussed. The

minimization process proceeds exactly as before and in place
of eq 23 we obtain

If we express this equation in thek representation, where〈k|x̂|k′〉
) i ∂/∂k δ(k-k′), and introduce the variable2

eq 25 can be written in the form

where ψκ(k) ≡ 〈k|ψκ
σ〉. Introducing the modified lowering

operatorL̂ defined by

lets us write eq 27 in the abstract form

This lowering operator,L̂, is closely related toâ but there exist
important differences that we shall explore in the next section.
The solution to the homogeneous form of eq 29 is easily shown
to be â|φ0

σ〉, whereâ is a constant of integration. Using the
normalization〈k ) 0|ψκ

σ〉 ) 1 (see ref 2), we obtain the solution

of eq 29 whereR̂ is a new raising operator defined by

It is easily shown that the operatorsL̂ and R̂ are not exact
inverses (analogous to the situation forâ andâ†) becauseL̂ has
a zero eigenvalue. Instead, they obey the commutation relation

[x̂ + iσ2k̂]|ψ1
σ〉 ) iσ2k̂|φ0

σ〉 (23)

[x̂ + iσ2k̂]|φ1
σ〉 ) iσ2k̂|φ0

σ〉 (24)

[x̂ + iσ2k̂]|ψκ+1
σ 〉 ) iσ2k̂|ψκ

σ〉 (25)

ê ≡ k2σ2

2
(26)

e-ê ∂

∂ê
[eêψκ+1(k)] ) ψκ(k) (27)

〈k|L̂|k′〉 ) e-ê ∂

∂ê
[eêδ(k-k′)] (28)

L̂|ψκ
σ〉 ) |ψκ-1

σ 〉 (29)

|ψκ+1
σ 〉 ) |φ0

σ〉 + R̂|ψκ
σ〉 (30)

〈k|R̂|k′〉 ) e-ê∫0

ê
dêh [e-êhδ(k′-kh)] (31)

[L̂, R̂] ) |φ0
σ〉〈k′ ) 0| (32)

â0,σ|φ0
σ(R)〉 ) R|φ0

σ(R)〉 (17)

â0,σ ) 1

x2
[ x̂σ+ ik̂σ] (18)

|ψ1
σ〉 ) |φ1

σ〉 + |φ0
σ〉 (19)

(∆x∆k)2 ) ∆f
2 + ∆v

2 (20)

∆f
2 ≡ 〈ψ1

σ| x̂2|ψ1
σ〉

〈ψ1
σ|ψ1

σ〉2
[〈φ0

σ|k̂2|φ0
σ〉 + 〈φ1

σ|k̂2|φ0
σ〉 + 〈φ0

σ|k̂2|φ1
σ〉]

(21)

∆v
2 ≡ 〈ψ1

σ| x̂2|ψ1
σ〉〈φ1

σ|k̂2|φ1
σ〉

〈ψ1
σ|ψ1

σ〉2
(22)
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The above process can be repeated using|ψκ+1
σ 〉 as a starting

state and so on. The general result is

and

We now define theµ-wavelet,|φκ+j
σ 〉, for n g 1 as

which from eqs 29 and 30 leads to

and

for j g 1. Starting with|φκ+1
σ 〉 and eq 37, we can generate an

infinite family of µ-wavelets for a givenκ by repeated
application of the raising operation, where each application of
the raising operatorR̂ results in a unit increase of theµ-wavelet
index. Lower-indexedµ-wavelets can be obtained from those
of higher index by application of the lowering operator. As
outlined above,|φκ+1

σ 〉 is the family member oflowest index
that enters naturally into the theory (although, of course, the
family could be artificially extended by repeated application of
the lowering operator on|φκ+1

σ 〉). However, for the caseκ ) 0,
eq 24 is equivalent to

Thus,|ψ0
σ〉 ≡ |φ0

σ〉 is in the extended family ofµ-wavelets with
integer index. Furthermore,

from which it is immediate that, by extension,

For these reasons, the family of waVelets with integer index
are special, and consequently we refer to them as canonical
µ-waVelets.From eq 34 we have for the canonicalµ-wavelet
case that

The explicit form for the canonicalµ-wavelets in thek
representation is obtained from

The calculation is straightforward and, when combined with
the results of eq 40, yields the succinct formula

which holds for all integerValues of n, positiVe or negatiVe

(because 1/n! is zero for negative integers, yieldingφn ) 0, n
< 0). Finally, analytically summing the geometric series, eq
41, leads to

so the state vectors|ψn
σ〉 are simply finite sums of the

µ-wavelets. In fact, it was previously shown that these|ψn
σ(0)〉

are exactly the HDAFs.1,2 We shall give an explicit formula
for (R̂ - 1)-1 in the next section. It is evident that the canonical
µ-wavelets play a central role in the refinement of|ψκ+n

σ 〉 with
increasingn, as we will later discuss in more detail. In this
regard, we remark that|φ0

σ〉 has been shown to evolve by a
diffusion-type process wheren plays the role of a discretized
“time” variable.2 That is |φn

σ〉 is the evolved state at “time”n.
Asymptotically, for largen, this behavior approaches true
diffusion. Thus,R̂ in eq 42 can also be viewed as a kind of
discretized “time” evolution or diffusion operator. Finally, we
emphasize again the fact that these various relations can be
referenced to any point in phase space by means of the shift
operator.

This completes our summary of theµ-wavelets derivation.
We turn now to a more detailed examination of some properties
of µ-wavelets, in particular their close connection to harmonic
oscillator states as was already implied in our foregoing
discussions.

III. Relations between µ-Wavelets and Harmonic
Oscillator States

To begin we note that we can define an operator that
transforms the|n,σ〉 harmonic oscillator eigenstates directly into
the |φn

σ〉. This is most easily seen in the coordinate representa-
tion where the harmonic oscillator state is given by

and, taking the Fourier transform of eq 42

Here Nn ) 1/x2nn!x2πσ is the normalization constant that
normalizes the harmonic oscillator eigenstates to unity.Equation
46 can be taken as a definition of theµ-waVelets for half-integer
n (wheren! has the usualΓ-function interpretation). Note that
the coefficient is purely imaginary for half-integern. Under this
definition eq 42 is replaced by

Defined in this manner, theµ-wavelets satisfy eqs 36 and 37.
Similar to the situation for integern, the entire family of half-
integer µ-wavelets can be generated from|φ1/2

σ 〉 by repeated
applications ofR̂. The coordinate representation relationship
between the canonicalµ-wavelets and the harmonic oscillator
states thus is

L̂|ψκ+1
σ 〉 ) |ψκ

σ〉 (33)

|ψκ+n
σ 〉 ) |φ0

σ〉 + R̂|ψκ+n-1
σ 〉 )∑

j)0

n-1

R̂j|φ0
σ〉 + R̂n|ψκ

σ〉 (34)

|φκ+j
σ 〉 ≡ |ψκ+j

σ 〉 - |ψκ+j-1
σ 〉 (35)

L̂|φκ+j+1
σ 〉 ) |φκ+j

σ 〉 (36)

R̂|φκ+j
σ 〉 ) |φκ+j+1

σ 〉 (37)

L̂|φ1
σ〉 ) |φ0

σ〉 (38)

L̂|φ0
σ〉 ) 0 (39)

|φ-n
σ 〉 ) |ψ-n

σ 〉 ) 0 for n ) 1, 2, 3, etc. (40)

|ψn
σ(0)〉 ) ∑

j)0

n

|φj
σ〉 ) ∑

j)0

n

R̂j|φ0
σ〉 (41)

〈k|φn
σ〉 ) 〈k|R̂n|φ0

σ〉 for n g 0 (42)

〈k|φn
σ〉 ≡ φn(k) ) ên

n!
e-ê (43)

|ψn
σ〉 ) ∑

j)0

n

|φj
σ〉 ) (R̂ - 1)-1(|φn+1

σ 〉 - |φ0
σ〉) (44)

〈x|n,x2σ〉 ) Nn exp(- x2

4σ2)Hn( x

x2σ) (45)

〈x|φn
σ〉 ) 1

x2πσn!(-1
4 )n

exp(- x2

2σ2)H2n( x

x2σ) (46)

〈k|φn
σ〉 ≡ φn(k) ) [sgn(k)]2nên

n!
e-ê

n ) integer or half-integerg 0 (47)

〈x|φn
σ〉 ) 1

x2πσn!(-1
4 )n

N2n
-1 exp(- x2

4σ2)〈x|2n,x2σ〉 (48)
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In abstract form we have

where

In eq 49 we have introduced the transformation operatorÂσ,λ
which, in the coordinate representation, is given by

for 0 e λ e 1. It is useful to define a new set of ket vectors by

so that|ηn
σ,0〉 ) |2n,x2σ〉 and |ηn

σ,1〉 ) |φn
σ〉.

The biorthogonal complement of|ηn
σ,λ〉 is

where

The operatorÂσ,λ is nonsingular and soÂσ,λ
-1 is well defined;

however, it is unbounded and so its matrix elements do not
converge in all representations (although they do converge in
both the coordinate representation and the harmonic oscillator
representation of eq 45). The ket vector|ηn

σ,λ〉b is in the Hilbert
space (i.e., normalizable in the senseL 2) for 0 e λ < 1. The
limit lim λf1

b〈ηn
σ,λ| is not a normalizable Hilbert-space vector,

but the function defined by limλf1
b〈ηn

σ,λ|x〉 exists and is simply
proportional toH2n(x/x2σ). The biorthogonality relation

for all λ in the range 0e λ < 1 (and hence in the limit asλ f
1) follows immediately from the defining equations and the
orthogonality of the harmonic oscillator states of eq 45.
Obviously, only for λ ) 0 is the dual of |ηn

σ,λ〉 its own
biorthogonal complement. One can also resolve the identity in
terms of the|ηn

σ,λ〉 states, but we defer a discussion of this point
until later.

It is clear that the algebraic structure of the harmonic oscillator
is maintained in the|ηn

σ,λ〉 biorthogonal basis because they are
connected by similarity transformations. Thus, the transformed
annihilation operator,âσ,λ, and creation operator,âq

σ,λ are given
by

and

Note thatâq
σ,λ is not the adjoint ofâσ,λ except for the caseλ )

0. The transformed creation and annihilation operators, of
course, must still obey the commutation relation

The raising and lowering equations become

and

In the momentum representation, these equations are consistent
with the general form of〈k|φn

σ〉 of eq 47 whenλ ) 1. Note,
from the above two equations, that althoughâσ,1 and âq

σ,λ are
related to L̂ and R̂, respectively, (e.g.,〈k|â|k′〉 ) iσk/x2
〈k|L̂|k′〉), they are inherently different in that the former lower
and raise in increments of1/2 whereas the latter lower and raise
in unit increments.

The transformed Hamiltonian is

and, although it is not self-adjoint in the biorthogonal repre-
sentation, its eigenvalue structure is unchanged. That is, one
still has

Other properties of the harmonic oscillator states also follow
trivially from those of the similarity transformation.

Perhaps the most important feature of this mapping between
the harmonic oscillator states and theµ-wavelets is that it
establishes the conditions under which the latter are complete.
Thus,by including integer and half-integerµ-waVelets, we can
expand any Hilbert-space ket vector,|f〉, for which the expansion
coefficientslimλf1

b〈ηn
σ,λ|f〉 exist.This corresponds to the dense

Schwartz subspace. This is useful, for formal consideration of
the properties ofµ-wavelets. For example, in computing (R̂ -
1̂)-1 that appears in eq 44, we can take advantage of the fact
that the〈k|φn

σ〉 are complete and simply consider the action of
(R̂ - 1̂) on an arbitrary Schwartz-space basis state. From eq 27
we find that

Clearly, the inverse (R̂ - 1̂)-1 then is given by

because this operator inverts eq 63 for every basis vector|φn
σ〉.

As another example, we can use completeness to find a closed
form expression for|ψκ+n

σ 〉 of eq 34. Thus, starting from the

[âσ,λ, âq
σ,λ] ) 1̂ (58)

âq
σ,λ|ηn

σ,λ〉 ) (Mn+1/2
σ

Mn
σ )λ

x2n + 1|ηn+1/2
σ,λ 〉 (59)

âσ,λ|ηn
σ(0)〉 ) (Mn-1/2

σ

Mn
σ )λ

x2n|ηn-1/2
σ 〉 (60)

Ĥσ,λ ) âq
σ,λâσ,λ + 1

2
1̂ (61)

Ĥσ,λ|ηn
σ,λ〉 ) (2n + 1

2)|ηn
σ,λ〉 (62)

〈k|(R̂ - 1̂)|φn
σ〉 ) - ∂

∂ê
φn+1

σ (ê) (63)

〈k|(R̂ - 1̂)-1|k′〉 ) -∫ dk′′ 〈k|L̂|k′′〉 ∫0

ê′′
dêh δ(kh-k′) )

- ∫0

ê
dêh δ(êh-ê′) - δ(k-k′) (64)

|φn
σ〉 ) 1

x2πσn!
(-1

4 )n
N2n

-1Âσ,1|2n,x2σ〉 )

(Mn
σ)-1Âσ,1|2n,x2σ〉 (49)

Mn
σ ≡ (2πσ2)-1/4(-1

2 )nx(2n)!
n!

(50)

〈x|Âσ,λ|x′〉 ) δ(x′-x) exp(- λx2

4σ2) (51)

|ηn
σ,λ〉 ) (Mn

σ)-λ Âσ,λ|2n,x2σ〉 (52)

b〈ηn
σ,λ| ) (Mn

σ)λ〈2n,x2σ|Âσ,λ
-1 (53)

〈x|Âσ,λ
-1|x′〉 ) δ(x′-x) exp(λx2

4σ2) (54)

b〈ηm
σ,λ|ηn

σ,λ〉 ) δm,n (55)

âσ,λ ) Âσ,λâ0,x2σÂσ,λ
-1 )

(1 + λ)
2σ

x̂ + iσk̂ (56)

âq
σ,λ ) Âσ,λâ

†
0,x2σÂσ,λ

-1 )
(1 - λ)

2σ
x̂ - iσk̂ (57)

7322 J. Phys. Chem. A, Vol. 107, No. 37, 2003 Kouri et al.



expansion of an initial Schwartz-space state (assuming theγn

coefficients exist)

we have immediately that|ψκ+n
σ 〉, the state resulting fromn

iteration steps, is given in closed form by

How the initial state evolves under repeated iterations of the
constrained minimization procedure then becomes quite appar-
ent.

The question of the practical usefulness of expansions using
µ-wavelets as a basis set is, however, another matter. Formally,
we have expanded the ket vector|f〉 through application of the
identity in the form

As an abstract operator, forλ ) 1 this expression only has
meaning in the sense of theλ f 1 limit becauseb〈ηn

σ,1| cannot
be normalized; however, the expansion is valid provided limλf1

〈n, x2σ,λ|f〉 exists. In essence all we have done is to expand a
function f(x) ≡ 〈x|f〉 by

•first multiplying it by exp(λx2/4σ2),
•then expanding the result in a harmonic oscillator basis

(assuming the expansion coefficients of exp(λx2/4σ2) f(x) exist),
and

•finally multiplying that result by exp(-λx2/4σ2).
Whether this is a computational efficient procedure, of course,

depends strictly onf(x). However, without question it expands
the domain on which the function is to be represented and
concomitantly tightens the range of the expansion functions
about the fixed origin. In fact, we have evidence that such
expansions may be especially useful, e.g., in treating certain
mechanical systems such as vibrating rods and plates.20 Another
promising application appears to be for Hermite polynomial
representations of the spectral density operator for filter diago-
nalization.21

Of course, we could also write the identity in the abstract
form

where |ηn
σ,λ〉b is the dual of b〈ηn

σ,λ|. This amounts to just
reversing the order of application of the points of procedure
above, which of course simply yields an expansion off(x) in
terms of Hermite polynomials. For Hilbert-space functions there
are no convergence issues.

In either case, as a practical matter we are constrained to
representingf(x) in some region about a fixed origin, and this
can be a severe limitation in, for example, scattering calculations
where we need to describe a wave packet over a substantial
spatial region. In the next section we explore how the basis
functions can be shifted so as to avoid the constraints of a fixed
origin.

IV. Distributed Approximating Functionals and Coherent
States

Although, in principle, a very broad class of functions can
be represented on the whole line from-∞ to +∞ by an

expansion in Hermite polynomials, in practice such an expansion
is most useful when a representation of the function in the
vicinity of the origin is desired. If we want to represent an
abstract ket vector about an arbitrary phase pointxj, kh, we can
easily do so by using the shift operator to write the identity in
the form

This is an exact relation when all terms of the infinite sum are
retained, but it is also of practical usefulness for evaluating〈x|f〉
nearxj, and similarly〈k|f〉 nearkh. Under these circumstances
we can expect that relatively few terms in the sum are required,
and thus we can approximate the identity by

The shift parameterRj (i.e., xj and kh) can be chosen as is
convenient for a particular purpose. Thex, x′ matrix element
of Îm(Rj ,λ) in the coordinate representation is

We obtain the HDAF approximation to the identity from this
equation by taking the limit limλf1 and settingxj ) x andkh )
k(x) (because a differentkh can be used for each value ofx) to
obtain

Note that, because〈x|ηn
σ,λ〉b is an odd function for half-integer

n, only integer values ofn enter in the sum. This leads to a
coordinate-representation expression for the identity in terms
of µ-wavelets. With increasingm the width of δm(x-x′,σ) is
squeezed with minimal spreading in thek representation in the
sense of the constrained variation principle of eq 14. We stress
that the functional form ofk in terms ofx is totally arbitrary
and can be set in any way that is convenient for the problem.
(See ref 22 for a discussion of a method for doing this using
classical dynamics.) It is also to be stressed thatδm(x-x′|σ,kh)
is nota standard coordinate representation of an approximation
of the identity operator and theµ-wavelets are not being used
here as a basis set in a conventional sense. In fact, everyx point
has its own basis.23 An important consequence is that the HDAF
approach gives a pointwise (as opposed toL 2) approximation
in thex-representation to any Hilbert-space state vector to which
it is applied.

The HDAF approximation to the function then is

In practical applications it is convenient to discretize the integral
to obtain

|ψκ
σ〉 ) ∑

n

γn|φn
σ〉 (65)

|ψκ+n
σ 〉 ) |φ0

σ〉 + R̂|ψκ-1
σ 〉 ) ∑

j)0

n-1

R̂j|φ0
σ〉 + ∑

j)0

∞

γj|φκ+n+j
σ 〉 (66)

1̂ ) ∑
n)0

∞

|ηn
σ,λ〉b〈ηn

σ,λ| for 0 e λ < 1 (67)

1̂ ) ∑
n)0

∞

|ηn
σ,λ〉b〈ηn

σ,λ| for 0 e λ < 1 (68)

1̂ ) D̂(Rj)1̂D̂(-Rj) ) D̂(Rj)∑
n)0

∞
b|ηn

σ,λ〉〈ηn
σ,λ|D̂(-Rj) ) 1̂

for 0 e λ < 1 (69)

(Îm(Rj ,λ) ≡ D̂(Rj)∑
n)0

m
b|ηn

σ,λ〉〈ηn
σ,λ|D̂(-Rj) ≈ 1̂ for

0 e λ < 1 (70)

〈x|Îm(Rj ,λ)|x′〉 ) ∑
n)0

m

〈x - xj|ηn
σ,λ〉beikh(x-x′)〈ηn

σ,λ|x′ - xj〉 (71)

δm(x-x′|σ, kh) ) lim
λf1

∑
n)0

m

〈0|ηn
σ,λ〉beikh(x-x′)〈ηn

σ,λ|x′ - x〉 (72)

f(x) ≈ ∫ dx′ δm(x-x′|σ, kh) f(x′) (73)

f(x) ≈ ∑
j

δm(x-xj|σ, kh) f(xj) (74)
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which requires knowing the function to be approximated on a
grid. A rigorous mathematical analysis of the HDAF ap-
proximation to Hilbert-space functions, and any number of
derivatives, has been given by Chandler and Gibson.24 In
particular, they prove that the HDAF yields uniform, pointwise
convergent approximations to appropriately defined classes of
L2-functions and any number of derivatives almost everywhere.
Of course, there is nothing unique about the coordinate
representation. Features of the HDAF approximation, including
how to carry out the discretization for accurate computation of
a function and its various derivatives and how to calculate the
action of various operators, have been extensively discussed
in a number of papers to which the interested reader is re-
ferred.16-19,22,23The whole development obviously can be given
where the roles ofx̂ and k̂ are interchanged so that the spread
in thek representation is squeezed at minimal expense in thex
representation.

Another point to be mentioned concerns the coherent state
representation of the identity, to which the HDAF bears certain
similarities.9 It is well-known that the|φ0

σ(R)〉 satisfying eq 17
are an overcomplete basis in Hilbert space, with a resolution of
the identity given by

The integration is two-dimensional over the real and imaginary
parts of all complex eigenvalues,R (corresponding to a classical
phase space integral). Because the coherent states are overcom-
plete one can only establish convergence in a weak sense.
Nevertheless, it has been shown that the coherent states can be
“sampled” discretely in theR-index and, provided the sampling
is sufficiently fine, the resulting subset of coherent states remains
overcomplete. This is accomplished by dividing the phase space,
(x, k) ≡ R into regular cells of areaS, such thatS e 2πp, and
sampling one coherent state within each cell. In the case where
S ) 2πp, the set remains complete if any one state is deleted,
but it becomes incomplete when two or more states are
removed.8 The ket vector,|φ0

σ(R)〉, in both the coordinate or
momentum representation, is a Gaussian with a variance
determined byσ2 in x andσ-2 in k. Of course, the uniqueness
of the Gaussian can be viewed as a consequence of the fact
that eq 15 follows from insisting that|φ0

σ(R)〉 be a state of
absolute minimum uncertainty.

A comment on the term “coherent states” is in order at this
point. Sometimes it is used to refer to any set of states that
provides a “tight-frame” resolution of the identity such as that
given by eq 75. A distinctly different usage (and the one from
which the term derives) refers to states that evolve coherently,
i.e., preserve their Gaussian form under free or harmonic
propagation. (For example, a particle of massm, initially in the
state|φ0

σ(R)〉 and freely propagating for a time,t, evolves so
that it is centered atx(t) ) x + (pk/m)t andk in the classical
phase space. Furthermore, it retains its Gaussian shape in both
thex andk representations although it spreads according toσ2

f σ2 + ipt/m. The evolved state is no longer of absolute
minimum uncertainty, but it is of relative minimum uncertainty
under an appropriate constraint.) Sometimes the term coherent
state is simply used to refer to the set of vectors{|φ0

σ(R)〉},
which satisfy both of the first two conditions and additionally
are of minimum uncertainty. When the concept of coherent
states is generalized, the set of vectors{|φ0

σ(R)〉} are generally
referred to as “canonical coherent states”.9 Because theµ-wave-
lets also derive from a (constrained) minimization and further-

more have similar propagation properties, it is an attractive idea
to consider if they can be used in some way as coherent states.
This can indeed be done in several ways.

It is known,9 but apparently not widely appreciated, that the
“tight-frame” resolution of the identity is not a demanding
condition and in this sense a very broad set of states can be
taken to be coherent states. This fact is obfuscated because the
usual demonstration of eq 75 relies on the specific form of the
representation of|φ0

σ(R)〉 in terms of unshifted harmonic
oscillator states In fact, it is easy to show that any set of ket-
vectors of the form

satisfy a tight-frame completeness relation. Here

Note that the functiong must be square integrable for|g(R)〉 to
lie in the Hilbert space. (We stress that in writing|g(R)〉 as a
function of the complex variableR there isno implication of
analyticity in R in any representation of the abstract vector.)
To establish the completeness relation we note that

(More generally, the identity can be resolved by
∫ dR |g′(R)〉〈g(R)| provided only that the states|g(R)〉 and
|g′(R)〉 are not orthogonal). It is clear that the set of coherent
states{|g(R)〉} are not linearly independent because

and thus the set is overcomplete. It is noteworthy that the above
implies the existence of infinitely many reproducing kernels
(RPK)9,25and concomitant RPK Hilbert spaces (which are dense
subspaces of the fullL 2-Hilbert space). To establish that the
set{|g(R)〉} are coherent states (in the generalized sense of being
able to resolve the identity9), nothing was required except that
g(x) be square-integrable. Thus, one has great flexibility in
defining coherent states in terms of resolving the identity (see
eq 78). The utility of canonical coherent states over other choices
lies in their propagation and uncertainty properties. That is,
|φ0

σ(R)〉 ≡ D̂(R)|φ0
σ(0)〉 is tightly centered (and in terms of the

uncertainty principle optimally centered) around the classical
phase pointx andk. Whetherµ-wavelet coherent states, which
satisfy similar properties, can be similarly exploited to useful
ends is a topic under current investigation.

V. Discussion

In this paper we have explored the connections between
µ-wavelets and the harmonic oscillator eigenstates. The analysis
was first done by assuming an origin, in phase space, atxj ) kh
) 0. By use of the shift operator,9 D̂(R), the results can be
expressed relative to an arbitrary point in phase space,R ) (xj,
kh). It was found that theµ-wavelets are associated with new
raising (R̂) and lowering (L̂) operators whose algebra differs
from that of the standardâ, â† of the harmonic oscillator.
However, like the latter, they are fundamentally consequences

1̂ ) 1

π〈φ0
σ(0)|φ0

σ(0)〉
∫all R

dR |φ0
σ(R)〉〈φ0

σ(R)| (75)

〈x|g(Rj)〉 ) e-ikhxj/2eikhxg(x-xj) (76)

g(x) ) 〈x|g(0)〉 (77)

∫ dRj |g(Rj)〉〈g(Rj)|
) ∫ dx∫ dx′ ∫ dRj |x〉〈x|g(Rj)〉〈g(Rj)|x′〉〈x′|
) π∫-∞

∞
dy |g(y)|2 ∫ dx∫ dx′ |x〉δ(x-x′)〈x′| )

π〈g(0)|g(0)〉1̂ (78)

|g(R)〉 ) 1
π〈g(0)|g(0)〉∫ dRj |g(Rj)〉〈g(Rj)|g(R)〉 (79)
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of the minimization of the Heisenberg uncertainty principle, with
the essential difference being theµ-wavelet states provide
relatiVe minimum Heisenberg uncertainty products. One reflec-
tion of the distinction between (L̂, R̂) and (â, â†) is that the
former maintain the symmetry of theµ-wavelets whereas the
latter always change the symmetry of the harmonic oscillator
state on which they act. This is a consequence of the fact that
the µ-wavelet index is always1/2 that of the corresponding
harmonic oscillator state, whereasL̂ and R̂ shift the index by
one. The HDAF|ψn

σ〉 results from application of the operator
∑j)0

n R̂j to the µ-wavelet |φ0
σ〉. This geometric series is easily

summed by writing it as∑j)0
∞ R̂j - ∑j)n+1

∞ R̂j, which gives eq 44
for the “HDAF-operator”.

Of considerable interest in quantum mechanics for the
purposes of approximations and computations is the issue of
completeness of sets of states. We have shown herein that
µ-wavelets (and HDAFs) admit several ways in which they can
be used to approximate states systematically and controllably.
To date, the most intensely studied of these23,24 is in the sense
of so-called weak or pointwise completeness. Although this type
of convergence does not preserve, e.g., properties that depend
on convergence in theL 2-norm, it has proven to be robust
computationally for solving both linear and nonlinear partial
differential equations.26 Convergence in the sense of theL 2-
norm can be achieved in several ways. One is to Schmidt-
orthogonalize theµ-wavelets (i.e., construct the appropriate
biorthogonal sets of states by the usual method of inverting the
overlap matrix of theµ-wavelets). If one restricts consideration
to the dense subspace ofL 2-functions that decay faster than
any polynomial (the Schwartz space), thenµ-wavelets are the
dual functions for an expansion in Hermite polynomials; if one
expands the Schwartz space inµ-wavelets, then the Hermite
polynomials play the role of the dual functions.

We also show thatµ-wavelets are one of the limiting cases
of a continuousfamilyof biorthogonal basis functions, the other
limit being complete orthonormal harmonic oscillator states. The
family is indexed by the parameterλ, ranging fromλ ) 0 for
the harmonic oscillator toλ ) 1 for theµ-wavelets. Yet another
resolution of the identity follows from using theµ-wavelets as
coherent states. In this case, one may selectany particular
µ-wavelet and generate an overcomplete set of states by applying
D̂(R) for all possible complex values ofR. Although such
coherent state resolutions of the identity can be created using
anyL 2-function, particulary useful ones (the canonical coherent
states9) are those generated from the Gaussian. Theµ-wavelets
belong to this particular family of coherent states as a
consequence of their being minimum Heisenberg uncertainty
states. We believe that the fact that one can construct coherent
state resolutions of the identity usingany L 2-function is not
widely appreciated even though the proof is significantly simpler
than the standard one given in text books of completeness of
the canonical coherent states (which relies on expressing the
states in the harmonic oscillator orthonormal basis). We
therefore also give in the Appendix the corresponding proof
for an arbitrary set of coherent states, generated from anyL 2-
state,|g(0)〉. An inevitable conclusion of this analysis is that
coherent states are so generic thatonlywhen they are generated
from anyL 2-function that has some special dynamical signifi-
cance will they be of particular use. The canonical coherent
states, being based on the absolute minimum uncertainty
Gaussian, certainly satisfy this condition. We contend that
µ-wavelets, as relative minimum uncertainty states (and therefore
as “generalized Gaussians”) share this character.

The next step in our study of such states will focus on the
multidimensional generalization of theµ-wavelets.18 These
promise to be of significant interest because the corresponding
non-Cartesian DAFs (NCDAFs) are already known to be
examples of multidimensional, entangled quantum states. This
will be discussed elsewhere.27
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Appendix. Some Explicit Properties of the Shift
Operator, D̂(r)

Consider an abstract state vector,|f〉 with x-component〈x|f〉
) f(x). Assuming thatf(x) admits to a Taylor series expansion,
we have that

The origin off̃(k) can be similarly shifted in thek-representation
where f̃(k) is the Fourier transform off(x). The state vector

can thus be thought of as first centering (in the above sense)
the abstract vector atxj and the resulting vector aroundkh. In the
x-representation we have that

and in thek-representation

The phase factor, eixjkj, appears in thek- but not the x-
representation because of the order in which the shifting
operations were performed. It is convenient to split this phase
factor democratically between the two representations by
defining a shift operator

which produces a “shifted” ket-vector according to

Here we follow the convention

whereσ is a positive, real number that fixes the scale length
for the state. (For notational convenience in eqs 84-86 we have
dropped the overbar onx and k. When a label is needed, we
will use the same designation onx, k, andR, for example,xj, kh,
and Rj .) The operatorsâ0,σ and â†

0,σ are the standard lowering
and raising operators

f(x-xj) ) e-xj/∂/∂x f(x) ) 〈x|e-ixjk̂|f〉 (80)

eikhx̂e-ixjk̂|f〉 (81)

〈x|eikhx̂e-ixjk̂|f〉 ) eikhxf(x-xj) (82)

〈k|eikhx̂e-ixjk̂|f〉 ) e-ixj(k - kh) f̃(k - kh) (83)

D̂(R) ≡ e-(i/2)kxeikx̂e-ixk̂ ) eRâ0,σ
†-R* â0,σ (84)

|f (R)〉 ≡ D̂(R)|f〉 (85)

R ≡ 1

x2
(xσ + iσk) (86)

â0,σ ≡ 1

x2
(x̂σ+ iσk̂) (87)
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and

From eq 84 we have thatD̂(R) can be written in the two
equivalent forms

from which it is immediate that

and hence thatD̂(R) is unitary. The zero subscript in eqs 87
and 88 is included because we will have reason to make use of
shifted lowering and raising operators given by

and

If it is also the case that the power series ofg(x) is everywhere
convergent, then from eq 85

Under these circumstances, it is of some interest to resolve|g(R)〉
in harmonic oscillator states|n,σ〉, n ) 0, 1, 2, .... In this
representation5,6,9,11,12

where

The matrix element [D̂(R)]n,n′ is conveniently evaluated, using
the second form in eq 89, to obtain

The last equality follows from expanding eRâ0,σ
† and e-R* â0,σ in

Taylor series and making use of the standard “lowering” and
raising operations

and

The sum in eq 96 can be performed explicitly to obtain the
equivalent forms

from which it can immediately be verified explicitly in this
representation thatD̂(-R) is the inverse ofD̂(R). That is

and making use of the fact that eγR+γjRj is an eigenfunction of
∂/∂R ∂/∂γj with eigenvalueγRj , we find that

The final equality results from the fact that after differentiation
no terms survive that have either (γ + γj) or (R + Rj) as a factor.

The last two expressions of eq 99 can be written in the form

wherey ) |R|2 andæ(R) andæ(-R*) are, respectively, the phase
angles ofR and -R*. To further simplify the expression for
[D̂(R)]n,n′, it is instructive to establish eq 78 in this representation.
Thus we evaluate

It is convenient to carry out the integral over the complex
R-plane in polar coordinates. The integral over the phase angle
is trivial and leads to

wheren+ (n-) is the greater (lesser) ofn andn′, andnj+ andnj-
are similarly defined. Now eyyn+-n- dn+/dyn+ [yn-e-y] is a
polynomial of degreen+, and hence, if we performnj+ parts
integrations, we find that the integral vanishes ifnj+ > n+.
Similarly, eyynj+-nj- dnj+/dynj+ [ynj-e-y] is a polynomial of degree
nj+, and hence,n+ integrations-by-parts lead us to the conclusion
that if n+ > nj+, the integral also vanishes. Therefore, the integral

â†
0,σ ≡ 1

x2
(x̂σ - iσk̂) (88)

D̂(R) ) e-|R|2/2eRâ0,σ
†
e-R* â0,σ ) e|R|2/2e-R* â0,σeRâ0,σ

†
(89)

[D̂(R)]† ) D̂(-R) ) [D̂(R)]-1 (90)

âR,σ ≡ D̂(R)â0,σ[D̂(R)]† ) â0,σ - R1̂ )
1

x2
(x̂ - x

σ
+ iσ[k̂ - k]) (91)

â†
R,σ ≡ D̂(R)â†

0,σ[D̂(R)]† ) â†
0,σ - R1̂ ) 1

x2
(x̂ - x

σ
- iσ[k̂ - k])

(92)

〈x|g(Rj)〉 ) 〈x|D̂(Rj)|g(0)〉 (93)

|g(R)〉 )∑
n,n′

|n,σ〉[D̂(R)]n,n′gn′(0) (94)

gn′(0) ≡ 〈n′,σ|g(0)〉 (95)

[D̂(R)]n,n′ ≡ 〈n,σ|D̂(R)|n′,σ〉 )

e|R|2/2∑
j

(-R*) j

j!

Rn-n′+j

(n - n′ + j)!

(n + j)!

xn!n′!
(96)

â0,σ|n,σ〉 ) |n - 1,σ〉n1/2 (97)

â†
0,σ|n,σ〉 ) |n + 1,σ〉(n + 1)1/2 (98)

[D̂(R)]n,n′ ) e|R|2/2

xn!n′!{ ∂
n′

∂Rn′
∂

n

∂γn
eγR}

γ)-R*
)

e|R|2/2

xn!n′!{ ∂
n

∂γn
[γn′eγR]}

γ)-R*
) e|R|2/2

xn!n′!{ ∂
n′

∂Rn′[R
neγR]}

γ)-R*

(99)

∑
n′

[D̂(R)]n,n′[D̂(-R)]n′,n′′ )

e|R|2

xn!n′′!
∑
n′

1

n′!{ ∂
n′

∂Rn′

∂
n

∂γn

∂
n′′

∂Rjn′′

∂
n′

∂γjn′
eγR+γjRj}

γ)-R*,Rj)-R,γj)R*

(100)

∑
n′

[D̂(R)]n,n′[D̂(-R)]n′,n′′ )

e|R|2

xn!n′′!
{ ∂

n

∂γn
[(γ + γj)n′′eγaj+γR+γjaj]}

γ)-R*,aj)-R,γj)R*

) δn,n′′

(101)

[D̂(R)]n,n′ ) ey/2

xn!n′!
ei(n′-n)æ(-R*)y(n′-n)/2 dn

dyn
[yn′e-y] )

ey/2

xn!n′!
ei(n-n′)æ(R)y(n′-n)/2 dn′

dyn′ [yne-y] (102)

∑
n,nj,n′,nj′

|n,σ〉∫ dR [D̂(R)]n,n′gn′(0) gnj′*(0)[ D̂(-R)]nj′,nj〈nj,σ|
(103)

∫ dR [D̂(R)]n,n′[D̂(-R)]nj′,nj )

δn-n′,nj-nj′π

xn!n′!nj!nj′!
∫0

∞
dy eyyn+-n- dn+

dyn+
[yn-e-y]

dnj+

dynj+
[ynj-e-y] (104)
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is nonzero only ifn+ ) nj+. The term of highest degree of each
in the aforementioned polynomials has a coefficient of unity,
which allows us to evaluate the integral whenn+ ) nj+ by parts
integration. We find that

and hence

From the foregoing it is apparent that the polynomial ey dn+/
dyn+ [yn-e-y] of degreen- belongs to a set of polynomials with
fixed (n+ - n-) that are mutually orthogonal on the positive
real axis under the weight e-yyn+-n-. Thus, to within a
normalization, they must be theassociated Laguerre polynomi-
als that are orthogonal on the same interval and under the same
weight.28 Specifically,

Finally, from eq 102 we have that

whereæ is the phase angle ofR if n′ > n and the phase angle
of -R* if n > n′. The coherent state with eigenvalueR can be
generated from the basic vacuum state, withR ) 0 by

The last equality follows from the first equality in eq 89 and
the fact that

The annihilation operator for theR-shifted state isâR,σ given
by eq 91.
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