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We consider additional aspects of the recently derived “minimum uncertapafytgvelets. In particular, we

show that they are fundamentally related to both the harmonic oscillator eigenstates and the canonical coherent
states that play a fundamental role in quantum dynamics. In addition, we derive new raising and lowering
operators that apply to thewavelets. Finally, we explore in some detail the senses in which-twavelets

form complete sets that can be used in a variety of applications in quantum dynamics.

I. Introduction It is useful to examine some of the reasons why the coherent
states (and the harmonic oscillator eigenstates) are so widely
relevant. Perelomdvhas discussed very clearly the intimate
connection between the more familiar coherent states and
algebras of various quantum mechanical operators. The non-
Abelian character of the operator groups underlying these
algebras imposes uncertainty constraints on the precision with
which the physical properties associated with the operators can
be determined. Furthermore, these constraints are fundamentally
responsible for the distinctive nature of quantum mechanics
aﬁompared to classical dynamics. Because there is great tech-
nological potential associated with processes that follow the
guantum mechanical rather than classical dynamics, one expects
that it is essential to understand and be able to create and utilize

Recently it has been shown that there exist new, relative
minimum solutions of the Heisenberg uncertainty product, which
we called “minimum uncertainty”«) wavelets!—® Imposition
of a constrained minimization on the Heisenberg uncertainty
product leads to a hierarchical relation for generating states of
decreasing uncertainty in one canonical variable from states of
greater uncertainty in this variable, while producing the minimal
increase in the uncertainty of the canonically conjugate variable.
The role of the constraint is to prevent the variation from simply
leading to a Gaussian that has been squeezed in one canonic
variable. If the starting point of the hierarchy is taken to be the
conventional “vacuum state” (eigenstates of the annihilation
operator,a, with eigenvalue zero), then one obtains the result . X .
that theu-wavelets are a generalization of the standard vacuum maximally controlled quantum states of a wide variety of

(Gaussian) states. Because coherent states are eigenstates ofSyStemS or materials. The greatest progress in this d‘feC“O” hgs
with, in general, complex eigenvalues each such state can been for spin-type systems, but there is enormous interest in

be viewed as the vacuum state for the shifted operator similar control over matter waves. Unfortunately, there is
relatively little known aboutexact entangled solutions of

A=3—q (1) the Schirdinger equation describing systems of material par-
ticles.
Consequently, forrach member of the overcomplete set of It is the eigenstates of physical (Hermitian) operators that
coherent states there is a corresponding hierarclhwvedvelet provide the mathematical tools (i.e., representations and basis

states. Because coherent states play a fundamental role in a vastets) for computations and system control, and again, the non-
range of physics!14 (quantum field theory, quantum elec- Abelian nature of the groups of operators representing the
trodynamics, solid state physics, statistical mechanics, etc.), ascommon observables of physical properties of material systems
well as in mathematics, it is of considerable interest to explore prevents one from having a single basis that can handle all
more deeply the properties pfwavelets and their connections  quantities of interest. Klauder and othershave stressed the

to coherent states. Additional impetus for such studies is important notion that canonical coherent states provide the best
provided by the fundamental role of the Heisenberg uncertainty possible compromise (in the minimum Heisenberg uncertainty
principle in such areas as digital signal processing, filter design, sense) between say the coordinate and momentum representa-
etc. This paper extends the earlier analysis presented by two oftions. The “canonical” label simply stresses the fact that these
the authors:? are coherent states associated with noncommuting canonically
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conjugate variables. In this regard, we stress the fact that someThe equality holds for the statgg(0)] which satisfies the
of the most useful coherent states are those based on theondition
Gaussian function, because these control the uncertainty in
position and momentum. In fact, we shall focus solely on these K13(0)= —io?k|¢3(0)] (6)
in the present work, although it is an interesting question whether
minimum uncertainty wavelets can also be generated for non-where o2 is real and greater than 0. (A family of relative
Gaussian coherent states associated with other types ofminimum uncertainty solutions arise if? is complex with
observableg:® Re o2 > 0; one can always introduce new canonical operators
The plan of this paper is as follows. In the next section we for which such states give the absolute minimum uncertainty
give a brief summary of thei-wavelets, the hierarchy they  product’:g)
satisfy, and their connection to previously introduced “Hermite ~ As is to be expected, these equations are essentially un-
distributed approximating functionals” (HDAFs). Also in this changed for ket vectors centered at an arbitrary pjritin
section we examine new raising and lowering operators for the the phase space. This is conveniently demonstrated by introduc-
u-wavelets that differ from the usual ones associated with ing the shift operatob(a).>" 1% For completeness, basic features
canonical coherent states and the eigenstates of the harmoniof this operator are discussed in the Appendix. The action of
oscillator3—6 D(a), expressed in either theor k representation, is to shift
Then in section 1ll, we examine some detailed relations the origin and adjust the phase of the ket vector on which it
betweenu-wavelets and harmonic oscillator states. We shall acts. That is, for any Hilbert-space veciti]
see thau-wavelets are eigenvectors of a non-Hermitian version o
of the harmonic oscillator, which is due to a similarity X [f(0) = X| D()|fC= & V25 —x)  (7)
transformation of the harmonic oscillator Hamiltonian, where
the transformation does not possess a bounded inYelges
will result in our obtaining various resolutions of the identity A (1/2)ixk —ixKE
in terms of u wavelets. Included are resolutions in theé? K [f(o) = K |D(a)[fl= €7 e 7 (K—k) (8)
(Hilbert space) sense, the weak sense, ang'thasense for the
dense Schwarz subspace of Hilbert space. Our discussion
focuses on the canonical coherent states and we follow the 11x .
review of Perelomoy¥. = 72[5 + 'k(’] )
In section IV we discuss the relation between HDXF¥
and the canonical coherent states. Then in section V we indicateqere o is a complex-number representation of the phase point
some possible avenues of further inquiry and give our conclu- y k. The quantityo is a scaling parameter with the dimensions
sions. Finally, in the Appendix we discuss the shift operator of |ength. Defined in this way
and establish completeness in the weak sensearfyr_ /2
function (the so-called “fiduciary function” discussed in Klauder D(a) *=D(a)" = D(—0) (10)
and Skagerstanf).

and

here

and thus the shift operator is unitary. By appropriate insertion
Il. Relative Minimum Uncertainty Hierarchy Defining of the identity in the form
p-Wavelets

A ALt
We shall couch our discussion in terms of the observables 1=D(c) B(e) (11)

corresponding to the (Cartesian) position operakpmnd its  into this series of equations, we can transform them so as to
canonically conjugate momentum operatky,satisfying the  reference them to any arbitrary k phase-space point. That is

commutation relation
0= [¢”(0)| (X — X)|¢”(a) 0

o T — i (12)
k=i @ B¢ (@)D
Thus,{%, k, 1} are elements of a Heisenberg Lie-algebta. LD (O
Consider the set of all ket vectae’(0)centered in the phase = 371k = Ki¢™(@)0 (13)
space ak = 0, k = 0 in the sense that [3°())|¢”(a) 0
OV _ (01X = %*¢ (@) 13" () (k — K?"() 1
o= oD © P60 "2
(14)
and and
o B @ (%= X)Igg()0= —io’(k— K)g()D  (15)
[3°(0)l¢°(0) In these equations, we have made use of the similarity
transforms
In one dimension, the Heisenberg uncertainty principle takes . .
the form D(a)%D(0)" = % — x
o S o o i o and
axak= FOKFOBOKIPCOD 1 -
37(0)¢°(0)3 2 D(e)kD(e)' =k — k (16)
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Equation 15 can be written in the well-known
form®.7-10

eigenvalue

8g0lPo(0) 0= algg(o)0] (17)
where

L 1%,

8, = ﬁ’a-l-lko] (18)

clearly is the annihilation operator for the stagg(0)l] From

the foregoing it is clear thatg(0)Uis proportional to |n = 0,

ol the harmonic oscillator ground state. Both are, of course,
Gaussian in either thg or k representation. We distinguish

between these two ket vectors because it is convenient (as latet

will be made clear) to apply different normalization conditions
to each, namelyk = 0|¢3(0)U= 1 andlh = O, o|n = 0, o=
1.

For our present purposes, a useful way to constrain the

minimization of eq 5 (and, more generally, eq 14), which we
now summarize, was first given by Hoffman and Kot#iFor
convenience we consider a state centerexd=at0, k = 0, but

as shown above, the state can be arbitrarily centered in the phase

space using the shift operator. To simplify notation, we will
assume that all ket vectors are centereck & 0 andk = 0
unless explicitly indicated otherwise. Thus, for example, we
write |pg(0)0 simply as |¢3l] We begin with the state of
minimum uncertainty|¢gC) and add to if¢]0] to the end that
Ax for the resulting statez7[] defined by

[pi0= 910+ |¢g0] (19)

Kouri et al.

unconstrained variation of eq 5. The result is the condition on
|7 Cthat2

[% + i0%K] |y {0= i0°k| g0 (23)
Using eq 19, we then obtain
[% + i0°K]| ¢, = io?k|pg0] (24)

Note that the operatok [+ io2K] that appears in these equations
is proportional to the annihilation operator (see eq 18) and that
eq 24 is somewhat reminiscent of a lowering operatiog§n

We shall now digress to consider the case where we replace
¢o0in eq 19 with anarbitrary vector, |,°0) having the
normalization® = 0|y, °C= 1, wherex is an index that denotes
a particular choice of the arbitrary initial state. For notational
convenience we will treat as though it were a numerical index
and reserve = 0 (and, as a consequence, all integer values of
«) for the caseyo’C= |¢3L) which we have just discussed. The
minimization process proceeds exactly as before and in place
of eq 23 we obtain
[%+ i0°Kyy 4, 0= i0°kiy0 (25)
If we express this equation in ttkgepresentation, whef&|X|k' [
=i 9/dk 6(k—k'), and introduce the variatfle

is decreased. We note that the starting vector can actually be

arbitrary, as we will discuss shortly, but we first focus on the

case where it is taken to be an absolute minimum uncertainty

state. Of course, if the new stdtg](lis not Gaussian, then the
overall uncertainty produchxAk must increase. Our object is
to have this happen in a controlled way. (Note: Here we are
squeezingAx at the expense okk; the roles can of course be
reversed.) Equation 5 can be expressed in the form

(AXAK)? = AP+ A2 (20)
where we constrain the variation to all possip}§Cithat keep
A, defined by

RSN i i
2= D I Wi 916,70
iy
(21)

fixed. Subject to this condition, we vary{Uso that that the
nonnegatie quantity A2, defined by

_ 31 K1y K g0
i

is a minimum. ClearlyA,2 > 0 (if we exclude the trivial case
where |¢70vanishes) and therefore the fixed value/gf sets
the “floor” below which AxAk cannot go. Such a variation is
similar in spirit to the Lagrange method of undetermined
multipliers in thatAs dependsboth on |ggland [¢]0and is
unknown until|¢7Chas been determined. The minimization of

f

AZ

\

(22)

eq 22 is carried out in exactly the same manner as the original,

E= % (26)
eq 25 can be written in the form
e E ey ] = 1, (27)

where y,(k) = [Ky/[ Introducing the modified lowering
operatorL defined by

LK = e*ifa%[eia(k—w)] 28)
lets us write eq 27 in the abstract form
LlwyO= 0] (29)

This lowering operato,, is closely related t@ but there exist
important differences that we shall explore in the next section.
The solution to the homogeneous form of eq 29 is easily shown
to be f|¢gl) wheref is a constant of integration. Using the
normalization® = 0|y,’0= 1 (see ref 2), we obtain the solution

[y, 1O |90+ Riy?O (30)

of eq 29 whereR is a new raising operator defined by

KRIKO= e [ dE [e o(k —K)] (31)
It is easily shown that the operatotsand R are not exact
inverses (analogous to the situation foanda’) becausé. has

a zero eigenvalue. Instead, they obey the commutation relation

A

[L, Rl = |¢gK = 0] (32)
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The above process can be repeated ugjig,Uas a starting ~ (because ! is zero for negative integers, yielding, = 0, n

state and so on. The general result is < 0). Finally, analytically summing the geometric series, eq
. 41, leads to
Clwfs0= [y/0 (33) i
and lynb= §0|¢;’D= R=1) (¢mal 105D (44)
=

n—1
[y, 0= |po0H+ ﬁWanle:Z)'ﬁwgD"‘ R'[y°0 (34) so the state vectorgy,[Jare simply finite sums of the
= u-wavelets. In fact, it was previously shown that thegg(0)O
are exactly the HDAF&2 We shall give an explicit formula

We now define thec-wavelet,|¢;,;[) forn > 1 as for (R — 1)~ in the next section. It is evident that the canonical
u-wavelets play a central role in the refinementpf,Cwith
[ o o
|¢K+1DE |’/’K+jD_ W’ijlD (35) increasingn, as we will later discuss in more detail. In this

regard, we remark thatyOhas been shown to evolve by a

diffusion-type process whene plays the role of a discretized
(36) “time” var_iable.2 That is |¢nClis t_he evoIV(_ed state at “timeri.

Asymptotically, for largen, this behavior approaches true

diffusion. Thus,R in eq 42 can also be viewed as a kind of

discretized “time” evolution or diffusion operator. Finally, we
ﬁ|¢:+jD= |¢Z+j+1D (37) emphasize again the_ far_:t that these various relations can Ipe

referenced to any point in phase space by means of the shift

operator.

This completes our summary of thewavelets derivation.
We turn now to a more detailed examination of some properties
of u-wavelets, in particular their close connection to harmonic
oscillator states as was already implied in our foregoing
discussions.

which from egs 29 and 30 leads to
Lighesya0= 165040

and

for j = 1. Starting with|¢,,,0Jand eq 37, we can generate an
infinite family of u-wavelets for a givenk by repeated
application of the raising operation, where each application of
the raising operatdr results in a unit increase of thewavelet
index. Lower-indexegi-wavelets can be obtained from those
of higher index by application of the lowering operator. As
outlined above|¢?, ,Ois the family member ofowestindex
that enters naturally into the theory (although, of course, the
family could be artificially extended by repeated application of

[ll. Relations between u-Wavelets and Harmonic
Oscillator States

the lowering operator o’ ,[). However, for the case = 0, To begin we note that we can define an operator that
eq 24 is equivalent to transforms thén,aCharmonic oscillator eigenstates directly into
. the |¢p0] This is most easily seen in the coordinate representa-
Li¢,"C= |¢g0 (38) tion where the harmonic oscillator state is given by
Thus, |yy0= |gs in the extended family gf-wavelets with _ i X
integer index. Furthermore, Dk|n,«/§0D= N, €x e Hy V20, (45)
I:|¢8D= 0 (39) and, taking the Fourier transform of eq 42
from which it is immediate that, by extension, —1\" 2
Y X (—1) exp(— X—)HZH(L) (46)
V2roni\ 4 20° V20

l¢” 0= p? 0=0 for n=1,2, 3 etc. (40)

_ . . o
For these reasons, the family of wedets with integer index ~ HereNn = 1/V2'nlv 270 is the normalization constant that

are special, and consequently we refer to them as canonical normalizes the harmonic oscillator eigenstates to uBEityiation

u-wavelets.From eq 34 we have for the canonigawavelet 46 can be taken as a definition of thevavelets for half-integer
case that n (wheren! has the usual’-function interpretation). Note that

the coefficient is purely imaginary for half-integerUnder this
n no definition eq 42 is replaced by

YROIC= 3 190 3 Rigil (41) )
e RIg= 6,09 = [sgn@] e
The explicit form for the canonicau-wavelets in thek o .
representation is obtained from n = integer or half-integer 0 (47)

o N Defined in this manner, the-wavelets satisfy eqs 36 and 37.
®|po= KIR¢o0  for n=0 (42) Similar to the situation for integer, the entire family of half-
integer u-wavelets can be generated fragf,[by repeated
applications ofR. The coordinate representation relationship
between the canonicalwavelets and the harmonic oscillator
n states thus is

B 6K = e (43)

The calculation is straightforward and, when combined with
the results of eq 40, yields the succinct formula

_q\n 2
X7 —— (—1) Nt exp(— X—)mzwiou (48)
which holds for all integervalues of n, positie or negatie V2moni\ 4 407
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In abstract form we have

7= \/z_ianl(%l)nNz“_lA 12n/200=
(M)A, 112n,v/2011(49)
where
= (270 )71/4( . )”V (r?!n) (50)

In eq 49 we have introduced the transformation operAtgr
which, in the coordinate representation, is given by

P
402) &1

for 0 < A < 1. Itis useful to define a new set of ket vectors by

XA i X 0= O(X x)ex;{—

5 0= (M) ™ A, ,12n/200 (52)
so that|;?°0= |2n,v/200and |72 0= |¢°0
The biorthogonal complement ¢§%*Cis
" = (M) 2, 20lA,, (53)
where
XA, , X 0= 0(X —X) exp(g) (54)

The operatorAM is nonsingular and SA;; is well defined;
however, it is unbounded and so its matrix elements do not

converge in all representations (although they do converge in
both the coordinate representation and the harmonic oscillator

representation of eq 45). The ket vecmﬁ"m is in the Hilbert
space (i.e., normalizable in the sens@) for 0 < 1 < 1. The
limit lim ;—, P2*| is not a normalizable Hilbert-space vector,
but the function defined by lim.; bEi]‘rf"ﬂxDexists and is simply
proportional toHz,(x/v/20). The biorthogonality relation

by 0
Ny

for all A in the range G< 1 < 1 (and hence in the limit ab—

1) follows immediately from the defining equations and the
orthogonality of the harmonic oscillator states of eq 45.
Obviously, only forA = 0 is the dual of|n; *Oits own
biorthogonal complement. One can also resolve the identity in
terms of thqnn’llistates but we defer a discussion of this point
until later.

Itis clear that the algebraic structure of the harmonic oscillator
is maintained in thenﬁ"Dbiorthogonal basis because they are
connected by similarity transformations. Thus, the transformed
annihilation operatord,;, and creation operatoia;i are given
by

0= O (55)

N N 1+1) . . .
a,, = As80/270 1 2% ) X+ iok (56)
and
R A A 1-1). . .
g, = A8 el = k) X —iok (57)

20
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Note thaté;i is not the adjoint of,; except for the casg =
0. The transformed creation and annihilation operators, of
course, must still obey the commutation relation

(8, 8,1=1 (58)
The raising and lowering equations become
&l 0= ( v s 69
n
and
8,11 (0) = M’) Vanini 0 (60)

In the momentum representation, these equations are consistent
with the general form ofk|¢.Uof eq 47 whenl = 1. Note
from the above two equations, that althoug@y and § a},l are
related to L and R, respectively, (e.g.[KlakO= iokin/2
K|L|K'D, they are inherently different in that the former lower
and raise in increments éf, whereas the latter lower and raise
in unit increments

The transformed Hamiltonian is

4

/1+2

6}; ;8 (61)

and, although it is not self-adjoint in the biorthogonal repre-
sentation, its eigenvalue structure is unchanged. That is, one
still has

Pl 170 (20 + 30 (62)
Other properties of the harmonic oscillator states also follow
trivially from those of the similarity transformation.

Perhaps the most important feature of this mapping between
the harmonic oscillator states and thewavelets is that it
establishes the conditions under which the latter are complete.
Thus,by including integer and half-integer-wavelets we can
expand any Hilbert-space ket vectft, for which the expansion
coefficientdim;— bl]]ﬁ’ﬂfDexist.This corresponds to the dense
Schwartz subspace. This is useful, for formal consideration of
the properties ofi-wavelets. For example, in computing ¢
1)~1 that appears in eq 44, we can take advantage of the fact
that thelK|¢,Oare complete and simply consider the action of
(R— 1) on an arbitrary Schwartz-space basis state. From eq 27
we find that

KR — 1)1¢o0= — a—ag;’ﬂ(é) (63)

Clearly, the inverseR — 1)~ then is given by
K(R— 1) k0=~ [ dk' KILK'DS dE o(k—K) =

— [ dE 0(E-&) — o(k—K) (64)
because this operator inverts eq 63 for every basis végfar

As another example, we can use completeness to find a closed
form expression foiy?, ,Oof eq 34. Thus, starting from the
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expansion of an initial Schwartz-space state (assumingthe expansion in Hermite polynomials, in practice such an expansion

coefficients exist) is most useful when a representation of the function in the
o o vicinity of the origin is desired. If we want to represent an
[y L= ZVn|¢nD (65) abstract ket vector about an arbitrary phase prift we can

" easily do so by using the shift operator to write the identity in
we have immediately thaty?, [ the state resulting fronm the form
iteration steps, is given in closed form by

. © i=D@id(-0) = D@ Y " myrAD(—a) = 1
VL= 10534 RO 5 RIGEDE S 60,0 (60 O
i= i=

for 0=<Ai<1 (69)
How the initial state evolves under repeated iterations of the
constrained minimization procedure then becomes quite appar.ThiS is an exact relation when all terms of the infinite sum are
ent. retained, but it is also of practical usefulness for evaluaiiffg]
The question of the practical usefulness of expansions usingnearx, and similarly (/fCneark. Under these circumstances
u-wavelets as a basis set is, however, another matter. FormallyWe can expect that relatively few terms in the sum are required,
we have expanded the ket vecttifthrough application of the ~ and thus we can approximate the identity by
identity in the form N
.2 1 (@4)=D@S p2*me*D(-a)~1  for
i= SpotmY  for 0<i<1 (67) (I(a.4) = D( )n: 1" " 1D(—)
n= 0<1<1 (70)
As an abstract operator, fdr = 1 this expression only has ] o _ )
meaning in the sense of thie— 1 limit becausé?Y cannot ~ The shift parameten: (i.e., X and k) can be chosen as is
be normalized: however, the expansion is valid provideg lim ~ convenient for a particular purpose. Thex' matrix element
{n, «/Eo,MfDexists. In essence all we have done is to expand a of Im(@,4) in the coordinate representation is
function f(x) = X|fOby m
«first multiplying it by exp@x2/_4a§, _ _ _ i (@A)X0= S X — X nz,lmeik(x—x’)wz,ﬂxl —x0 (71)
sthen expanding the result in a harmonic oscillator basis
(assuming the expansion coefficients of exgldo?) f(x) exist),
and We obtain the HDAF approximation to the identity from this
«finally multiplying that result by exptAx¥40?). equation by taking the limit lig-; and settingk = x andk =
Whether this is a computational efficient procedure, of course, k(x) (because a differerk can be used for each value x)fto
depends strictly of(x). However, without question it expands gbtain
the domain on which the function is to be represented and
concomitantly tightens the range of the expansion functions B m o
about the fixed origin. In fact, we have evidence that such 0, (x—X|o, k) = lim S 072" B metx —xd  (72)
expansions may be especially useful, e.g., in treating certain =
mechanical systems such as vibrating rods and pla#esother
promising application appears to be for Hermite polynomial Note that, becausg|,7*™ is an odd function for half-integer
representations of the spectral density operator for filter diago- N. only integer values oh enter in the sum. This leads to a

n=

nalization2! coordinate-representation expression for the identity in terms
Of course, we could also write the identity in the abstract Of u-wavelets. With increasingn the width of om(x—X,0) is
form squeezed with minimal spreading in theepresentation in the

sense of the constrained variation principle of eq 14. We stress

that the functional form ok in terms ofx is totally arbitrary

and can be set in any way that is convenient for the problem.
(See ref 22 for a discussion of a method for doing this using

where |72 is the dual ofPZ°%. This amounts to just  classical dynamics.) It is also to be stressed hgk—x |o,K)

reversing the order of application of the points of procedure is nota standard coordinate representation of an approximation

=S pdge’  for 0=i<1  (68)

n=|

above, which of course simply yields an expansiorf(®f in of the identity operator and thewavelets are not being used
terms of Hermite polynomials. For Hilbert-space functions there here as a basis set in a conventional sense. In fact, &ymint
are no convergence issues. has its own basi& An important consequence is that the HDAF

In either case, as a practical matter we are constrained toapproach gives a pointwise (as opposed't§) approximation
representing(x) in some region about a fixed origin, and this in thex-representation to any Hilbert-space state vector to which
can be a severe limitation in, for example, scattering calculationsit is applied.
where we need to describe a wave packet over a substantial The HDAF approximation to the function then is
spatial region. In the next section we explore how the basis
functions can be shifted so as to avoid the constraints of a fixed f(x) ~ f dx 8, (x—X|o, K) f(x) (73)
origin.

In practical applications it is convenient to discretize the integral

IV. Distributed Approximating Functionals and Coherent to obtain

States

Although, in principle, a very broad class of functions can f(x) ~ 26m(x—x‘.|a, k) f(x) (74)
be represented on the whole line fromeo to +o by an ]
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which requires knowing the function to be approximated on a more have similar propagation properties, it is an attractive idea

grid. A rigorous mathematical analysis of the HDAF ap- to consider if they can be used in some way as coherent states.

proximation to Hilbert-space functions, and any number of This can indeed be done in several ways.

derivatives, has been given by Chandler and Gi34oim It is known; but apparently not widely appreciated, that the

particular, they prove that the HDAF yields uniform, pointwise “tight-frame” resolution of the identity is not a demanding

convergent approximations to appropriately defined classes ofcondition and in this sense a very broad set of states can be

/2-functions and any number of derivatives almost everywhere. taken to be coherent states. This fact is obfuscated because the

Of course, there is nothing unique about the coordinate usual demonstration of eq 75 relies on the specific form of the

representation. Features of the HDAF approximation, including representation ofi¢g(c)C in terms of unshifted harmonic

how to carry out the discretization for accurate computation of oscillator states In fact, it is easy to show that any set of ket-

a function and its various derivatives and how to calculate the vectors of the form

action of various operators, have been extensively discussed o

in a number of papers to which the interested reader is re- X/g(a) 0= e "%e“g(x—x) (76)

ferred16-19.22.23The whole development obviously can be given

where the roles of andk are interchanged so that the spread satisfy a tight-frame completeness relation. Here

in thek representation is squeezed at minimal expense ix the

representation. 9(x) = x|g(0) (77)
Another point to be mentioned concerns the coherent state

representation of the identity, to which the HDAF bears certain

similarities? It is well-known that thel¢g(o)Osatisfying eq 17

are an overcomplete basis in Hilbert space, with a resolution of

the identity given by

Note that the functiorg must be square integrable fig(o) o

lie in the Hilbert space. (We stress that in writifg{ct)(Jas a
function of the complex variable there isno implication of
analyticity in o in any representation of the abstract vector.)
To establish the completeness relation we note that

1

l=—0F st — I
7l (0)lgg(0) =

da [po(a)Tgo(c)l  (75) [ da |g(@)TQ(a)|

= [Tdx ["dx [ da |xTX|g(a) Ta(o) X TX |
The integration is two-dimensional over the real and imaginary .
parts of all complex eigenvalues (corresponding to a classical = nffw dy [g(y)|? f dx f dx' X(x—X)X| =
phase space integral). Because the coherent states are overcom- 29(0)| (O)Ifl (78)
plete one can only establish convergence in a weak sense. 9
Nevertheless, it has been shown that the coherent states can baviore generally, the identity can be resolved by
“sampled” discretely in the-index and, provided the sampling 1 do |g/(o)MG(c)| provided only that the statelg(o)Jand
is SuffICIeI’]ﬂy f|ne, the resulting subset of coherent states remains |g'(a)[jare not Orthogonal) It is clear that the set of coherent

overcomplete. This is accomplished by dividing the phase space.states{ |g(ct)[} are not linearly independent because
(%, K) = ainto regular cells of are&, such thatS < 27h, and

sampling one coherent state within each cell. In the case where 1 N _
S = 2nh, the set remains complete if any one state is deleted, ﬂ@(ong(o)gf dot |9(2)Tg(a)lg(e)t (79)
but it becomes incomplete when two or more states are
removec® The ket vector,|¢5(a)[] in both the coordinate or  and thus the set is overcomplete. It is noteworthy that the above
momentum representation, is a Gaussian with a varianceimplies the existence of infinitely many reproducing kernels
determined by? in x ando~2 in k. Of course, the uniqueness (RPK)*2>and concomitant RPK Hilbert spaces (which are dense
of the Gaussian can be viewed as a consequence of the facsubspaces of the fulf’-Hilbert space). To establish that the
that eq 15 follows from insisting tha)(a)be a state of  Set{|g(c)l} are coherent states (in the generalized sense of being
absolute minimum uncertainty. able to resolve the identity, nothing was required except that

A comment on the term “coherent states” is in order at this 9(X) be square-integrable. Thus, one has great flexibility in
point. Sometimes it is used to refer to any set of states that defining coherent states in terms of resolving the identity (see
provides a “tight-frame” resolution of the identity such as that €d 78). The utility of canonical coherent states over other choices
given by eq 75. A distinctly different usage (and the one from lies in their propagation and uncertainty properties. That is,
which the term derives) refers to states that evolve coherently, [¢o(c)0= D(a)|¢5(0)Tis tightly centereddnd in terms of the
i.e., preserve their Gaussian form under free or harmonic uncertainty principle optimally center@round the classical
propagation. (For example, a particle of masgsnitially in the phase poink andk. Whetheru-wavelet coherent states, which
state|¢j(o)Jand freely propagating for a time, evolves so satisfy similaf properties, can_be sir_nila_rly exploited to useful
that it is centered at(t) = x + (hk/m)t andk in the classical ~ €nds is a topic under current investigation.
phase space. Furthermore, it retains its Gaussian shape in both .
the x andk representations although it spreads accordingtto V- Discussion
— 0% + iht/m. The evolved state is no longer of absolute  |n this paper we have explored the connections between
minimum uncertainty, but it is of relative minimum uncertainty ,-wavelets and the harmonic oscillator eigenstates. The analysis
under an appropriate constraint.) Sometimes the term coherentyas first done by assuming an origin, in phase space=ak
state is simply used to refer to the set of vectPrs;(a)J, = 0. By use of the shift operat8rD(a), the results can be
which satisfy both of the first two conditions and additionally expressed relative to an arbitrary point in phase space,(X,
are of minimum uncertainty. When the concept of coherent k). It was found that the.-wavelets are associated with new
states is generalized, the set of vectgis (o) are generally raising ) and lowering ) operators whose algebra differs
referred to as “canonical coherent statéBecause tha-wave- from that of the standard, &' of the harmonic oscillator.
lets also derive from a (constrained) minimization and further- However, like the latter, they are fundamentally consequences

19(c) =
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of the minimization of the Heisenberg uncertainty principle, with The next step in our study of such states will focus on the
the essential difference being thewavelet states provide  multidimensional generalization of the-wavelets'® These
relatize minimum Heisenberg uncertainty products. One reflec- promise to be of significant interest because the corresponding
tion of the distinction betweeri( R) and @, a") is that the ~ non-Cartesian DAFs (NCDAFs) are already known to be
former maintain the symmetry of thewavelets whereas the  examples of multidimensional, entangled quantum states. This
latter always change the symmetry of the harmonic oscillator will be discussed elsewhefé.

state on which they act. This is a consequence of the fact that
the u-wavelet index is alwayd/, that of the corresponding
harmonic oscillator state, wherehsand R shift the index by
one. The HDAF|yOresults from application of the operator
Zj":o R to the u-wavelet |3l This geometric series is easily
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completeness of sets of states. We have shown herein that

u-wavelets (and HDAFs) admit several ways in which they can Appendix. Some Explicit Properties of the Shift
be used to approximate states systematically and controllably.Operator, D(c)

To date, the most intensely studied of ti#égéis in the sense

of so-called weak or pointwise completeness. Although this type _
of convergence does not preserve, e.g., properties that depengv
on convergence in thg¢ 2-norm, it has proven to be robust
computationally for solving both linear and nonlinear partial (80)
differential equationd® Convergence in the sense of thé-

norm can be achieved in several ways. One is to Schmidt- The origin off(k) can be similarly shifted in thierepresentation
orthogonalize theu-wavelets (i.e., construct the appropriate wheref(k) is the Fourier transform di(x). The state vector
biorthogonal sets of states by the usual method of inverting the
overlap matrix of thei-wavelets). If one restricts consideration
to the dense subspace gf?>-functions that decay faster than
any polynomial (the Schwartz space), themvavelets are the
dual functions for an expansion in Hermite polynomials; if one
expands the Schwartz spacerwavelets, then the Hermite
polynomials play the role of the dual functions.

Consider an abstract state vectidrjwith x-componentx|f[]
f(x). Assuming thaf(x) admits to a Taylor series expansion,
e have that

f(x—%) = e ™ f(x) = e f0

M0 (81)
can thus be thought of as first centering (in the above sense)
the abstract vector &and the resulting vector aroukdIn the
x-representation we have that

jkx \—ixk i <
We also show that-wavelets are one of the limiting cases BXje™e = eka(X_X) (82)
of a continuougamily of biorthogonal basis functions, the other 5 in thek-representation
limit being complete orthonormal harmonic oscillator states. The
family is indexed by the parametér ranging fromi = 0 for [Il|ék‘e7i’_‘k|fD= g *k-K flk— K (83)

the harmonic oscillator té = 1 for theu-wavelets. Yet another

resolution of the identity follows from using thewavelets as
coherent states. In this case, one may sedewt particular

The phase factor, ® appears in thek- but not the x-
representation because of the order in which the shifting

u-wavelet and generate an overcomplete set of states by applyingpperations were performed. It is convenient to split this phase

D(a) for all possible complex values af. Although such

factor democratically between the two representations by

coherent state resolutions of the identity can be created usingdefining a shift operator
any./ 2-function, particulary useful ones (the canonical coherent

state8) are those generated from the Gaussian. Feavelets D(0) = e 12Xk = g, ~aa0, (84)
belong to this particular family of coherent states as a . B .
consequence of their being minimum Heisenberg uncertainty Which produces a “shifted” ket-vector according to
states. We believe that the fact that one can construct coherent A
state resolutions of the identity usirgy ./ 2-function is not If (0)B= D)0 (85)
widely appreciated even though the proof is significantly simpler Here we follow the convention
than the standard one given in text books of completeness of
the canonical coherent states (which relies on expressing the _1x

( - states : a= —(— + |ak) (86)
states in the harmonic oscillator orthonormal basis). We J2\o

therefore also give in the Appendix the corresponding proof
for an arbitrary set of coherent states, generated from/afy
state,|g(0)1J An inevitable conclusion of this analysis is that
coherent states are so generic thralyy when they are generated  dropped the overbar oxnandk. When a label is needed, we
from any./”2-function that has some special dynamical signifi- will use the same designation enk, anda, for examplex, k,
cance will they be of particular use. The canonical coherent anda.) The operatorsi,, and &}, are the standard lowering
states, being based on the absolute minimum uncertaintyand raising operators
Gaussian, certainly satisfy this condition. We contend that .
u-wavelets, as relative minimum uncertainty states (and therefore 8y, = i(&. igﬁ)
as “generalized Gaussians”) share this character. 7 V2o

whereo is a positive, real number that fixes the scale length
for the state. (For notational convenience in eqgs 8@ we have

(87)
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1 ()"( . A)
=== iok
\/E o

From eq 84 we have thdD(a) can be written in the two
equivalent forms

Y (88)

D((l) — e—\ulz/ZeuéoU e W — e|a\2/2 —a*aol,eaao(, (89)
from which it is immediate that
[D()]" = D(~a) = [D()] * (90)

and hence thab(o) is unitary. The zero subscript in eqs 87

and 88 is included because we will have reason to make use of

shifted lowering and raising operators given by

&,, = D(0)3,,[D()]" =3, —al=
1/X—X%X .
E(T +iofk — k]) (91)
and
3, =D(a),[D()]" =4, — ol =%2(X%‘X —iolk— k])

(92)

If it is also the case that the power seriegf) is everywhere
convergent, then from eq 85
¥9(a@) 0= XD(@)|g(0)] (93)

Under these circumstances, it is of some interest to resg(eg]

in harmonic oscillator statem,oJ n = 0, 1, 2, .... In this
representatiorf-9.11.12
19(0)T=y In,0TID ()]G4 (0) (94)
nn
where
9,(0) = [',0/g(0)0] (95)

The matrix element(ca)]ny is conveniently evaluated, using
the second form in eq 89, to obtain

[D(0)]y = M,0/D(e) N ,00=

e (_a*)i
Y

n—n'+j

o (n+j)!
=1+ Vo

The last equality follows from expanding?e-" and e . in
Taylor series and making use of the standard “lowering” and
raising operations

(96)

8y,,Ino0= [n — 1om*"” (97)

and

& InoC= In+ 1oln+ 1) (98)

Kouri et al.

The sum in eq 96 can be performed explicitly to obtain the
equivalent forms

|at|2/2 nooan
A e d d
[D(a)] =4{ ,—eya} =
e nin'!{ 9" 8‘}/” y=—o*
el
nin't{ ay" y=—a* nin'! | oo y=—a*

(99)

from which it can immediately be verified explicitly in this
representation thdd(—a) is the inverse oD(a). That is

> (D@ D] =

3" 8” "

eya+~/a]

g [
«/n|n”|”znl 3(1 a‘)/ 3(1 8‘}/

y=—a*,a=—a,y=0o*
(100)

and making use of the fact that®e”* is an eigenfunction of
dlda a/dy with eigenvalueyd, we find that

> D@ D)l =
n
of? n
_[(V + )—/)n”eya+ya+ya] = 6n,n”
nin’l 3]/” y=—o*a=—o,y=o*
(101)
The final equality results from the fact that after differentiation

no terms survive that have either{ ) or (o + @) as a factor.
The last two expressions of eq 99 can be written in the form

A ey Mg (—a), -2 d"
D : (A =
D@y == % yn[w e=
ey grmay -z d_ d"
[y'e (102)
Vnin'! dy”
wherey = |a|? andg(a) andg(—a*) are, respectively, the phase

angles ofa and —a*. To further simplify the expression for
[D(o)]nn, it is instructive to establish eq 78 in this representation.
Thus we evaluate

Zﬂln,oﬂf dot [D(0)],9r(0) Gy *(O)[D(— )] D01
n,n,n,n (103)

It is convenient to carry out the integral over the complex
o-plane in polar coordinates. The integral over the phase angle
is trivial and leads to

| da [B(@)]py D]y =

Onny =T froo . r
T Y yn Ly y1dyn [y"e] (104)

wheren; (n-) is the greater (lesser) ofandn’, andn, andn-

are similarly defined. Now Y"—"- d“/dy"+ [y-e™] is a
polynomial of degreen;, and hence, if we perform; parts
integrations, we find that the integral vanishesnif > n;.
Similarly, ey d"+/dy"+ [y"-e Y] is a polynomial of degree
N4, and hencen. integrations-by-parts lead us to the conclusion
that if n > ny, the integral also vanishes. Therefore, the integral
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is nonzero only ifny = ny. The term of highest degree of each

J. Phys. Chem. A, Vol. 107, No. 37, 2008327

The annihilation operator for the-shifted state i, , given

in the aforementioned polynomials has a coefficient of unity, by eq 91.

which allows us to evaluate the integral when= ny by parts
integration. We find that

J dodD(©)], 1 [D(— )]y = 70y, 1O

and hence

(105)

S oty dot [D()]G(0) GO D)y Dol =

7y In,olihol Y 6,(0) gy*(0) = #19(0)ig(0)1 (106)

From the foregoing it is apparent that the polynomiade/
dy"+ [y"-e7Y] of degreen_ belongs to a set of polynomials with
fixed (n+ — n-) that are mutually orthogonal on the positive
real axis under the weight %" "-. Thus, to within a
normalization, they must be tlassociated Laguerre polynomi-

alsthat are orthogonal on the same interval and under the same

weight?® Specifically,

@Wﬂ el=(- 1)"+

Finally, from eq 102 we have that

L”* ") (107)

y/2y(n+ n_ )/2Ln+ n_ (y)e(n, nye
(108)

[D()],y = (-1

(n+')

whereg is the phase angle ef if ' > n and the phase angle
of —a*if n> n'. The coherent state with eigenvalaean be
generated from the basic vacuum state, witks O by

165(0) 3= D()|¢3(0) = & "2 |p5(0)T  (109)

The last equality follows from the first equality in eq 89 and
the fact that

& “"%0|3(0)0= |45(0) (110)

References and Notes

(1) Hoffman, D. K.; Kouri, D. JPhys. Re. Lett.200Q 85, 5263.

(2) Kouri, D. J.; Hoffman, D. KPhys. Re. A 2002 65, 052106-1.

(3) Heisenberg, W.Physical Principles of the Quantum Thepry
Dover: New York, 1930.

(4) Merzbacher, EQuantum Mechani¢sWiley: New York, 1961;
Chapter 8. Gottfried, KQuantum Mechani¢8Benjamin/Cummings: Read-
ing, MA, 1966; pp 213-215.

(5) Cohen-Tannoudji, C.; Diu, B.; Lalpe~. Quantum Mechanics
Wiley: New York, 1977; Vol. |, pp 483619.

(6) Dirac, P. A. M.The Principles of Quantum Mechanjcéh. ed.;
Oxford University Press: London, 1958.

(7) Wodkiewicz, K.J. Mod. Opt.1987, 34, 941.

(8) Perelomov, A. MGeneralized Coherent States and Their Applica-
tions Springer-Verlag: Berlin, 1986.

(9) Klauder, J. R.; Skagerstam, B.<Soherent StatesVorld Scientific:
Singapore, 1985.

(10) Carruthers, P.; Nieto, M. MRev. Mod. Phys1968 40, 411.

(11) Schralinger, E.Z. Phys.1926 14, 664.

(12) Glauber, RJ. Phys. Re. 1963 131, 2766.

(13) Klauder, J. R.; Sudarshan, E. C. Bundamentals of Quantum
Optics Benjamin: New York, 1968.

(14) Loudon, R.; Knight, P. LJ. Mod. Opt.1987, 34, 709.

(15) See, e.g.: Walters, G. @/avelets and Other Orthogonal Systems
with Applications CRC Press: Boca Raton, FL, 1994.

(16) Hoffman, D. K.; et. alJ. Phys. Chem1991 95, 8299.

(17) Kouri, D. J.; et.alJ. Phys. Cheml992 96, 9622.

(18) Hoffman, D. K.; Kouri, D. JJ. Phys. Chem1993 97, 4984.

(19) Marchioro, T. L., II; et. alPhys. Re. E 1994 50, 2320.

(20) Saet, Y.; Kouri, D. J.; Hoffman, D. K. To be published.

(21) Vijay, A. J. Chem. Phys1999 111, 10794.

(22) Hoffman, D. K.; Arnold, M.; Zhu, W.; Kouri, D. 0. Chem. Phys.
1993 99, 1124.

(23) Hoffman, D. K.; Kouri, D. JProceedings of the 3rd International
Conference on Mathematical and Numerical Aspects ofé\Rroperties
and PhenomeneSIAM: Philadelphia, 1995.

(24) Chandler, C.; Gibson, A. Approximation Theorit999 100, 233.

(25) Aronszajn, N. IrReproducing Kernel Hilbert Spaced/einert, H.
L., Ed.; Hutchinson Ross: Stroudsburg, PA, 1982; p{¥8.

(26) Wei, G. W.; Zhang, D. S.; Kouri, D. J.; Hoffman, D. Komput.
Phys. Communl998 111, 93; Phys. Re. Lett. 1997, 79, 775. Zhang, D.
S.; Wei, G. W.; Kouri, D. J.; Hoffman, D. KPhys. Fluids1997 9, 1853;
Phys. Re. E 1997 56, 1197. Kouri, D. J.; Zhang, D. S.; Wei, G. W.;
Konshak, T.; Hoffman, D. KPhys. Re. E 1999 59, 1274.

(27) Kouri, D. J.; Hoffman, D. K. To be published.

(28) Abramowitz, M.; Stegun, |. AHandbook of Mathematical Func-
tions 10th Printing; Applied Mathematics Series 55; National Bureau of
Standards: Washington, DC, 1972.



